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Final Report

VISCOUS EFFECT ON SHIP WAVE RESISTANCE

Work on the subject problem under the sponsorship of DWTNSRDC

was initiated in October 1981 and terminated in September 1982. This

research is being continued under the Special Focus Program of the Office

of Naval Research.

During the contract year, one paper was published and two reports

were produced. These are the following:

1. 'Centerline Distribution as Solutions of Neumann Problems for

Ogivelike Forms", by L. Landweber, Eighteenth Midwestern

Mechanics Conference, May 1983.

2. Progress Reports by Kazuhiro Mori.

A. Calculation of Wave Resistance and Sinkage by Rankine-

Source Method.

B. Prediction of 2-D Near Wake Flow by Making Use of Time-

Dependent Vorticity Transport Equation.

C. Free-Surface Boundary Layer and Necklace Vortex

Formation.

H1HR Report No. 262, The University of Iowa, May 1983.

3. "Numerical Evaluation of the Havelock Green Function", by

Lawrence K. Forbes, unpublished. This is attached as part of this

Final Report.
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CENTERLINE DISTRIBUTIONS AS SOLUTIONS OF NEUMANN PROBLEMS

FOR OGIVELIKE FORMS

L. Landweber, Iowa Institute of Hydraulic Research

The University of Iowa, Iowa City, Iowa 52242

Introduction

As in well known, approximate solutions of symmetric Neumann problems for

thin, symmetric two-dimensional forms can be obtained by formulating the

boundary condition as a Fredholm integral equation of the first kind. Since

exact solutions of such integral equations exist only when certain conditions

are satisfied, it is of interest to find cases for which exact solutions can

be obtained.

The current interest in this problem stems from an attempt to find a

centerplane distribution for a slender ship form with ogive-like sections.

Slender-body theory would yield an approximate centerplane distribution for

such a form if the particular Neumann problems posed by the slender-body

theory have exact solutions for the transverse sections of the double ship

form.

In the present work, we shall be mainly concerned with solutions for

ogival sections. Applications of the procedures to other forms, such as

elliptical and doubly-parabolic (Wigley) sections will be indicated.

Geometry

The ogive is a two-dimensional form derived from the intersection of two

circular arcs of equal curvature. For a form of thickness 2c and length 2h,
its equation is

lyl ([h 2 + c )2  4c2 x 1/2 - h2 + c2 }, h < x < h (1)

.,.
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its slope at x = h is

t an a - -h c h tan (2)

and its radius of curvature is R = h sec a. The cosine of the angle of the
normal to the ogive with the x- axis is

ax _ X (3)an h- i

The exterior of the ogive in the z = x + iy plane is mapped into the

exterior of the unit circle in the plane C = + i n = p e4€ by the successive

transformations
z - h Z €+

Z = z +-;- , T Z= , T = (4)
where

Ir /2 / 4 1 (5)

Mappings of the ogive in the z, Z, T and C- planes are shown in Fig. 1. The
upper half of the ogive maps into the crescent ACBDA in the c- plane; the
lower half (not shown) would give the mirror image of the crescent.

Let 62' 0 *2 denote the polar angles in the Z, and T- planes, and put

w= (tan f/2) , E [w + 2w cos a +1] (6)
Then *2 = x e2 and the locations of points in the mappings of Fig. 1 are given

in the following table:

P D C E

z- pl - itana 0 -i cota

Z- pl 1 -eic -1 e-2ia

T- pl 1 1 leIB -1

4 -pl i Itan (W-") 0

Solutions of the Neumann Problem
We wish to find solutions of the Laplace equation

32 t + a 0 (7)

ax ay

for the exterior of the ogive which have zero circulation and, on its contour,

satisfy the boundary condition
34 f(x) (8)

"%" , * "
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where n denotes distance normal to the ogive, positive outwards. The form of

the Neumann boundary condition (8) implies that a/an is the same at ± y(x).

The flux through the ogive is given by

h
Q =2M =2 f(x) d-sdx (9)

-h

where s denotes arc length along the ogive, positive in the counterclockwise

sense.

In the C- plane, the Neumann boundary condition becomes

p = f(x) (10)
=mC

For the ogive, we have

x = h (1 - 2)/ E (11)

and

il.= 2h w (12)
x E2 sin

We define a zero-flux potential o0 by

o _ 3$ _. M (13)
= + M In p. 3 = (13)

The complex potential for this Neumann problem is then

w(C) =  + i = M In C +; JO p  In (C - e1  ) dO , p >1 (14)

* 0
and the complex velocity is

dw M 1 >1 (15)

The form of dw/dc in (15) cannot be used to continue the complex velocity
analytically into the unit circle. If none of the singularities of dw/dk lies

within the crescent ACBDA in Fig. 1, the function can be continued

analytically to the arc BCA in the C- plane, and hence to the axis of the
ogive in the z- plane. We would then have, at the ogive axis,

dw dz u (x,O) iv (x, 0+ ) (16)dz dz = u

- ., . ;W'.' a > -. . . .. ... ,. . i.s- _,-.. - ._ . .....-. .>: T-..



where u and v are velocity components in the x- and y- directions, and 0+

indicates that y + 0 through positive values. The axial source distribution

would then be given by

(x) v (x,O) - -m w (17)

where Im denotes the imaginary part.

Example: Ogive in a Uniform Stream

For this case, the exact centerline distribution can be found by a

simpler method and is given by

-:' x)4X x4;k 2 x2 2;k- I

m(x) _ 6 A 2 h2 sln 2wx (h + Xh- h - - x 2 ) 2 (18)

[(h + x) - 2(h2 - x2 ) cos 2wx + (h - x) l (2

More generally, however, an explicit algebraic formula for the complex

velocity, as was used to derive (18), is not available. An alternative

procedure is to investigate the singularities of the integrand of (15),

expressed as a line integral around the unit circle of a function of

C I = e if . If 3*/ap' can be expressed as a function F(C'), (15) could be

written as
dw M i . C ()d z = C-" J F(C ') (€_ (19)
dz C i F

In the present case, M = 0 and, by (3)
a x (2)f(x) sn = - 2) h

and, by (10), (11) and (12),

2
Bog _ 2hw w! 2 i
0-= - "hcE4-- .Lin € , 1 (21)

AE sin *'

Since sin f' = (C 2 _ 1)/2ic , and one can show that

1_ - 1/X eia ia (2
= e ( -1) = - Z e (22)

we see that at/ap' can be expressed as F(C'), and (19) becomes

dw 4 h sin 0 -
The appar E4 (2 - 1)( - p - o

The apparent singularity at c' = ± Iis removable. The partial-fraction form

"V



1-2 1 1 1 +-J.---- (24)€'€ E4 "2 sin 7Z iel~ 2 -al2 l+ i~
E 2 we- +1 (we- +1) we +1 (we' +1)

then shows where poles of the integrand may be present. We find that

(we- l+1) has no zeros within the unit circle, but that

wX + 1 - 2 ( 2' - 2 +. (25)
vanishes at C' =0. Hence, since there are no singularities within the

crescent, this confirms the existence of an exact centerline distribution.
It is also of interest to attempt to evaluate the integral in (23). In

.4 order to apply the Cauchy residue theorem, it is necessary that the integrand

be a regular function, except at C' = 0. Because of symmetry, the imaginary
parts of the integrands at conjugate points in the unit circle must have

opposite signs when C - t > 1. These two requirements can be satisfied only if

the integrand is real along the diameter c' = E', - 1 < &' < 1. It can be
*! shown that this last condition is satisfied by the third and fourth terms of

(24). Since these are also the terms which, by (25), yield the singularity,

-, one may apply the residue theorem to that part of the integrand containing

these two terms. By applying (25), we obtain

)2 .... 22
2 ) (we i a + 1) e i a + 1 4 2 2 s.

The expression (23) for the complex velocity then becomes

dw 2ih r 1 1 )2 dc'_ Xh (26)__-__- - ; C(26)
d' we" (e-ia+l (2_ C 2

!. Comparison with the known exact expression

dw , dz (27)f = h (1 -L) - 0-

indicates the value of the remaining integral in (26). Since the present

example was treated for the purpose of illustrating a procedure for finding

centerline distributions, and, in general, integrals such as that in (26),
would require numerical evaluation, further consideration of this case would

not be rewarding.

4.
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Procedure for Ogivelike Sections

1. Map the given section in the z- plane into the unit ciricle in

the C- plane. For an ogivelike section, this is best done with the

preliminary transformation (4) to transform the section first into a nearly

circular form.

2. Map the axis of the ogive into the interior of the unit circle. The

crescentlike region bounded by this curve and the arc of the unit circle gives

the mapping of the upper (or lower) half of the given section.

3. Obtain 34/3p, the Neumann boundary condition on the unit circle,

express it as function F(C), C = e , and determine the singularities of the

integral expression (15) for dw/dC. If none of the singularities lies within

the crescentlike region, then there exists a centerline distribution of

sources which gives the solution of the given Neumann problem for the section.

4. If the solution exists, it can be obtained by solving numerically a

Fredholm integral equation of the first kind formulated by equating the normal

component at the surface of the given profile, induced by the unknown axial

source distribution, to the prescribed Neumann boundary condition.

A

h h
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NUMERICAL EVALUATION OF THE HAVELOCK GREEN FUNCTION

by

Lawrence K. Forbes

Iowa Institute of Hydraulic Research
The University of Iowa

Iowa City, Iowa 52242 USA

:4
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Abstract

Three closed-form approximations to the double-integral "near-field" term

in the Havelock Green function are derived. An application to centerplane

source distributions for ship-wave problems is discussed.
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1. Introduction

In the theory of potential flow about arbitrary bodies moving steadily in

or beneath a linearized free surface, the velocity potential is usually sought

as the solution to an integral equation having as the kernel a derivative of

the Havelock Green function in the direction normal to the body surface. The

choice of the Havelock Green function as the fundamental solution to Laplace's

equation is natural, since it immediately ensures that the linearized free-

surface condition and the radiation condition are satisfied. However, this

important advantage is offset by the great complexity of the function itself,

forcing some investigators [1, 2, 3] to abandon it completely in favor of the

* simpler Rankine source function.

Because of the central role played by the Havelock function in the theory

of ship wave resistance, its numerical evaluation has been the subject of much

research. There are many different expressions for this function, all of

which may be related to one of the three basic forms summarized by Noblesse

[4), who simplified the form of the function somewhat through the introduction

of the complex exponential integral.

In the numerical application of the Havelock Green function to the

solution of practical ship-wave problems, there are two basic difficulties to

overcome. The first of these is due to the additional singular behavior of

Z% this Green function on the plane of the linearized free surface, described by

Noblesse [4]. This problem may be circumvented by adopting the approach of

Miloh and Landweber [5]. They showed that, under certain assumptions about

the ship-hull geometry, the problem could be reduced to finding an appropriate
.4,

source distribution M on the ship centerplane satisfying the first-kind

Fredholm integral equation

4
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3

M (p) G(Q,P) +x (

Q Q

on the ship hull

y = ± f(x,z) , (2)

where P( ,O,c) and Q(x,y,z) are points on the centerplane and ship hull,

respectively. The Havelock Green function is denoted by the symbol G(Q,P) and

: NQ represents the direction normal to the hull. By discretizing the integral

on the left-hand side of equation (1) using Gaussian quadrature, the

requirement that numerical grid points be placed on the plane z = 0 of the

undisturbed surface is eliminated, and the singular nature of the Havelock

: Green function on this plane is avoided. The results of the present paper

* have been developed primarily with a view to their eventual implementation in

the numerical solution of equation (1).

The other major difficulty with the Havelock Green function is the

computing time required to evaluate it. On the ship hull, in particular, the

"near-field" component of this Green function, which may be expressed in terms

of a double integral, cannot reasonably be ignored and an efficient method for

its evaluation must be developed. A simple calculation serves to illustrate

the point; if a solution to equation (1) is sought, employing 50 points from

bow to stern and 20 points from keel to free surface in the discretization of

the integral (a total of 1000 points), then 106 separate evaluations of the

Green function would be required to form the kernel of the integral

equation. A single accurate evaluation typically requires in excess of

1/10 th sec. computing time, so that approximately 105 secs. or one day
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continuous computing time would be required to solve the problem, which is

unreasonable. Such considerations lead Lee [6] to conclude that the function

cannot be applied to the solution of practical flow problems.

In the present paper, a number of different approximations to the basic

function ([7), page 484)

G(QP) 1 1 1 2w - exp [kz' - ikp cos (0 - k dk '1':-;G(Q,P) + - -- + -le

f0 f0 k 212
F2 cos2

o reCos (e a)
2-r /2  exp F2 Cos ] sin F2 cos2  do (3)- 2J co 2 2  s2 B de (3)

-7 /2 F2 cos2 8

and its derivative in the direction normal to the hull (2) will be derived,

and their suitability for the rapid evaluation of these functions

determined. Here, F is a Froude number based on the ship length and R is the

distance

R = x'2  y + (z 0 2 1 12 (4)

between the points Q(x, y, z) and P(E, n, C). The quantities x', y', z' are

defined by the relations

-= y - (5)

Z' = Z + .

In addition,

P

,,* , *' *,' .% ,,, . . * .. .- * -.. ,. . - . ..... , . - .,...'.. ..... .. •. .• . .. . . . , .. . .
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= ' 2 + y2 + 21/2 (6)

and

- = [x'2 + y.2]/2 (7)

a = arctan (y'/x')

2. Direct Numerical Evaluation

In order to evaluate the Havelock Green function numerically, the Cauchy

principal-valued integral appearing in equation (3) is first transformed by a

straightforward contour integration due to Havelock ([8], page 291). After

some algebra, equation (3) becomes

1 1G(Q,P) = - - -

2 i/2  0 k - k p cos e cos kz'J- / 0 k 2 [F 2 Cos 2 + k sin kz'] dk do

-iF/2 0 + F4 cos 4 (e+a)

4 i/ 2  exp z' si cos (e -a)] do
- f exp 1-2 z2 I _L_2__2_(8F /2+ F2 cos 2  sin F2 cos2 os8

where the functions R, R', etc. are defined by equations (4) - (7).

The (indefinite) integral with respect to k in equation (8) may be

evaluated using the Laguerre polynomial approach (see [9], page 890,

formula 25.4.45). To demonstrate that acceptable accuracy could be maintained

by the Laguerre polynomial method when the integrand is oscillatory, the test

*functions

4.;

.9 - - . - - , - ;? - '" . .•"' - -. .- . - " . ,- - . .. .-- ---. .. -.. , . .. - . . -,... -,. . .., ., -. . , .-, - . i 2 _ - .-- 2 -. 2 ' . ' :
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0sin

were evaluated using the fifteenth-order integration formula, and it was found

that the result agreed with the exact answer 1/2 to six figures in both cases.

Once the k-integration in the double-integral term in equation (8) has

been performed, it remains to integrate the result with respect to e. This

may be achieved using Gaussian quadrature. Similarly, the single-integral

term in equation (8) may be evaluated by Gaussian integration.

Finally, the normal derivative

aG (QP) = V G(QP) o N (9)
aNQ Q

i* is usually required, as in equation (1), for example. Here,

- f I +j- fk
N= x 2 iz.  (10)
[1 + fx f 2

is the normal vector to the ship hull. The derivatives of G in the x -, y -

and z-directions are computed using forward differences.

3. Asyrptotic Expansion for Small Froude Number

To develop an asymptotic expansion for small Froude number, equation (3)

is first expressed in the form

G = - - -+ N3 + W3

where

- * * .. ' ~ '.. h - 1
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N 2 +2 R
N3 =r+ Re 71e E1 (Z3 ) dt

and

4m sec2e exp Iz' sec 2 e + ip sec 2 e cos (e - de (11)

W2  - _/ 2 + F

The complex number Z3 in equation (11) is defined as

3 = 2 Dz 0 + t 2 ) + i ( x' + ty')(1 + t2/

F

and EI (Z3) is the complex exponential integral

e

E1 (Z3) f Z3 - •

Equation (11) is the third of the forms of the Havelock Green function derived

by Noblesse [4].

Since the evaluation of the exponential integral of the complex argument

Z3  is apparently more time consuming than the corresponding Laguerre-

polynomial integration in section 2, equation (11) does not appear to be of

much value in the direct numerical evaluation of the Havelock Green function,

despite the fact that the double-integral term has been reduced to a single

integral involving the exponential integral, which in some sense may be

regarded as an "elementary" function. However, equation (11) readily yields

*: an asymptotic expansion for low Froude number.

Since IZ31 becomes large as F + 0, provided that x', y', and z' do not

all simultaneously vanish, the function El(Z 3) may be replaced by its

asymptotic expansion for large JZ3 1,

"4

.!-
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z3  1' (-1)" n!
El (Z3 ).~e +

3 n=1 z3

I! Substituting tnis result into the formula for the near-field disturbance term

N3 in equation (11) yields the asymptotic expansion

N- 2 +2 "dt " dt:-. N3- -+- le [i  T + £ (-1) n! n; (12)
.... Z3  n=1 - 3 Z

* 3

Each of the integrals in equation (12) may be evaluated in closed form, using

the calculus of residues, but with greatly increased labor for every increase

in the value of n.

We have computed the first three terms in the asymptotic expansion (12)

for N3 , and present the results below. The first integral cancels with the

first term on the right hand side of equation (12); then, after substantial

calculation, the desired expansion is obtained in the form

F 2 2x .2 4
xF2  X 2  .2 (X - I + X1 z2

3 4R' I R@3 P2

6F4 [x#8z '6  x,6 z,4 (5y,2 + z 2

+ 8'(j
R r4 p8  R'3 r4 p8

+x' 4 z'2 (llY' 2z'2 + 2z' + 15y'4) + 2z' (x'4 - 6x' 2y'2 + y,4)

R' r4 p8  8

2 2 4 4

RI x'2 y'2 (21y' z' + 12z' + 5y' R'3 y 4 (y'2+ 2z 2)
4  8 + 48rP rP

6+ O(F ) , (13)

where

I ';:, ';' -:':':': --.-;';-:-.;. .--;. .,; -.;::. ; ;; ; ;;: ; --; -: ; : ; ;
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r = :,2 + :, 2.

To derive an asymptotic expansion for the wave-like contribution W3 to

the Green function in equation (11) we note that, for p * 0, the

2
parameter p/F becomes large as F + 0, and consequently W3 may be approximated

using the method of stationary phase. The result is classical, and appears in

numerous texts and articles on ship waves (see, for example, Stoker [10] and

Newman [11]). This gives

242 _ _ _ 2 z sec ei pg(ei) pg(ei)
* wl3"- F i=1 ,(ei) ec exp F 2 ]{cos F- 2- )+sin - 2 (14a)

for Itan a < 2 -3/2, where e1 and e2 are found from
•.m2 1i/2

tn -a (1 -8 tan2  )
1tan e, 2  4 tan a

and g (e1) = sec2 ei cos (ei- a), i = 1, 2

When ltan ai > 2 -3/2,

W3  0, (14b)

* .. and for tan a = ± 23/2

3/2 r1 3 1/3 3z'/
W -2 r ) exp sin E ]-i. (14c)

3pF 2] 2F

The low Froude number form of the Havelock Green function is thus given

by equations (11), (13) and (14). The normal derivative (10) is computed

!- using forward differences.

:"-.. , . .;'- .,,. . ..-..... -.. .... ,-. .. . . .. . . . . . .
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4. Approximate Green function for centerplane source distribution on a thin

ship

An alternative form of the Havelock Green function (3), which also

involves the exponential integral function El, is given by the expression

G = - + + NI +

IR' 1 1 ZI z

where

NI  f Im {e (Z1) + in Z1 + y} dt- (1 +
1 2 E m e Er( 1

and

CD 1 + F 4 t2  142W= 4H(x') f W exp -  F 2  F, 2

The complex number Z1 is defined as

Z _- (1 - t it ,/ 2 1

1 F 2 2 lIx'l - ty' + (1

and H(x') is the Heaviside unit step function, having the value 0 when x'< 0

and 1 when x'> 0. The term in Z1 + y, where y is Euler's constant, has been

included to ensure that the integrand of the expression for N1 is well behaved

when IZlI 0.

Equation (15) is the first of the forms of the Havelock Green function

derived by Noblesse [4), who recommends its use in the direct numerical

evaluation of this function (see also Noblesse [12, 13]). Actually, equation

4 44, -. 4'* -.- 4 .
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] (8) appears to be better suited to this purpose, for the reason outlined in

section 3. In addition, the use of equation (15) in an integral equation,

such as equation (1), requires special treatment of the step discontinuity at

x' =0.

Equation (15) may be used to derive an approximation to the normal

derivative of the Green function for centerplane source distributions. In

this case, the point P lies on the centerplane n = 0, and the point Q is on

the hull y = f(x, z). The flow is assumed to be symmetrical about the plane

y = 0, so that only one of the hull surfaces need be considered in equation

(2). If 3Nt/AN denotes the normal derivative of the near-field term N1 in

equation (15), then

"~ 1/2 a N,

r. 2 +f2 2
X z aN

=.2 1 21/ Z1  21/
* f - 1 (1 - ty'Im {e EI(Zl)[i fxsgn x' + t + fz(1 - t)j dt

f z'[- R'f sgn x' - x'f + f - z'f z]
2 z x xZ)(6

S(Ix'l + R + R'(Ix'I + R')2

The argument of the exponential integral in equation (16) generally takes

moderate values, and accordingly, the exponential integral may be represented

by the formula

El (Z1 ) - eZ +1 18 C (17)1(z). e r+ Zl + 6.
1 + 2 1 +J

This approximation is due to Hershey [14], and clearly consists of

approximating the exponential integral by a series of poles along the negative

real axis. Numerical values for cj, j = 1, ... , 18 and 6j, j = 2, ... , 18

are given in [14).

= " ' =,, , ?, Z ,,L , _w , ..- ",',". ,,,,' ' " '- , .. . . . . . . . . . . ... ".".-"," " . .. . .
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Using equation (17), the first term on the right-hand side of equation

(16) may be expressed in the form

E1  3w/ 2 Tlfxsgn x' - (x'l T2
2 2 + 2 cos e d (18)

rF- - w/2 T1 +x'

18 3w/2 (T1 cos 8 + F2sj -fx sgn x' - Ix'I T2 Cos 2
j1 2 2 2 2 Cose Ci

~F 2 -w/ (T1 cos e + F 2 + x cos e

where

T2= - f sin 8 + z' cos 8

T = sin 0 + fz cos e

The first term in (18) may be evaluated immediately, using the calculus

of residues, and becomes

2c1 fx z' sgn x' Z' f + fz (x2 + f2 + Ix'I R')

7 - R, (ix'i + R') R' (Ix'I + R')2

The second term could likewise be evaluated by the calculus of residues, by

summing appropriate contributions from each of the poles of the integrand, at

which the denominator vanishes. In this case, however, the denominator is a

quartic, and the formulas for its zeros are too complicated for practical use.

If the ship is very thin, f is a small quantity and terms involving it In

the denominator of the second integral in (18) may be neglected. Consequently

the denominator becomes approximately

z' cos4 e + (2F2 az' + x' 2 ) cos 2 e + F4 5 2

.* . a .
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which may easily be factorized. An approximation to the second integral in

(18) may now be derived in a straightforward manner using the calculus of

residues.

After much calculation, an approximation to equation (16) may be obtained

in the form

o.4

(1 + f +3N

2 1  fx z ' sgn x' z f + fz(X,2 + f2 + Ix'I R')
" - R' (Ix'l + R') R' (Ix'l + R')2

- 2 18 [(z'f x sgn x" JxJ fz )(1- 1I) + 12 F26 f xSgn x'

j=2 zz  f l

2z' - R' f sgn x'- x'f + f- z'f]

____ I X rZ+ (19 a)
- F2  Ix'l + R' R' (Ix'I + R') 2

where

1 U3  V3

11 = I~ E (U2 + 4z'2 ) (V2 + 4z2)I /
(19b)

1 U V
2 = (U2 + 4z' 2) (V2 + 4z2 2)r

and
.,.

U =x' + 8

(19c)

v IXII -B44

wI
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and

B (x2 4F6 z') 2 (19d)

If the argument of the radical in equation (19d) is negative, B becomes

imaginary and U and V in equation (19c) become complex conjugates. In this

case, 11 and 12 in equation (19b) remain real, and (19a) continues to yield a

real result. In addition, a meaningful limiting result may be derived

for B + O.

The normal derivative of the wave-like term W1 in equation (15) is

obtained by straightforward differentiation. The resulting integral may be

evaluated by the Hermite polynomial method (see [9], page 890,

formula 25.4.46).

5. Approximate Green function for y' * 0

In this section an approximation will be derived, based on the second of

Noblesse's [4] forms of the Havelock Green function. This may be written

G = + + N2 + W

where
N 2 f Z2 t dt
2=- f ImFe2 E1 (Z2 )} (1 + t 2

and

4 + 1) z' (t 2  + 1)
W f e xp s i n [ F (x' - tjy'j)) dt
2 F 0 F F2
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4 1 0 - t 2  Z8 t (1 - tI ly I G t 2 t2 i

F fo eF F2 Fz C2

and

z2 -4 [ly'I (1 + t2 )112 + x - tz,]. (20)

This form is clearly of little use in the direct evaluation of the Havelock

Green function, since the remarks of section 3 apply here also. In addition,

the wave-like part of the Green function, W2 , now contains two terms instead

of one.

An approximate form of the Havelock Green function, based on equation

(20), may be derived as in section 4 by substituting the approximate form (17)

of the exponential integral into the expression for N2. This yields

2e-y'I " dt
N2 - y' (1 + t 2 ) + (x' - z't) 2

2 18 - t 2 dt (21). _2 1y1 fy'22 2t2 2 2(1
j=2 - t y2t2 (1 + t 2 ) + (x't - z't + F26 .)

The first integral in this expression may be evaluated easily by the

calculus of residues and becomes simply w/(lY'IR'). The second integral

could likewise be evaluated using residue theory, but this would involve the

determination of the roots of the denominator, which is a quartic in t. This

is too complicated for practical use. Instead, the term t 2 (1 + t 2 ) in the

denominator of the second integral in equation (21) is replaced by t4 , which

is exact for t = 0 and accurate for large t. Then

-p

: ! ~ t . t a S S ~ . - - - - . - .-
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2c 1 + 18 dt
2  -c- E . Im f 2 2- iy'I t 2 + xt - z't + F2 .

The integral in this expression may now easily be evaluated using residue

theory, and thus N2 is given approximately by

18 12(T1 + {T+ T
N2 m-R- 4. c[ 42 + 2 2}

=2 T1  + T2

with

,2 2T 1 =x + 4F 6 z'

(22)

T2 4F 2 lj1y'l.

The wave-making term W2 in equation (20) may be evaluated using the

Hermite polynomial method to perform the first integration, as in section 4.

The second integral is evaluated using a Gaussian quadrature formula.

6. Conclusion

The application of the Havelock Green function to linearized ship-

hydrodynamic problems typically results in an integral equation to be

satisfied on the ship hull, with the normal derivative of the Havelock

function as the kernel. In this case, the "near field" double-integral term

may be expected to be of the same order of magnitude as the single-integral

term responsible for the generation of waves far downstream, and cannot

meaningfully be ignored in the evaluation of the kernel. However, the direct

numerical evaluation of this double-integral term for use in integral

-, . . - -,, '. '. .-. - -. ;.-. . - -. . -. --- . ....... .. .. .... . .. . .-
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equations appears to require an unreasonably large amount of time on most

present-day computers [6].

In order to avoid the direct numerical evaluation of this double-integral

term, a number of closed-form approximations to it have been developed in this

paper. Work is currently in progress to utilize them to determine a

centerplane source distribution valid for the description of flow about a

Wigley hull form at nonzero Froude number, by an iteration process similar to

that used by Miloh and Landweber [5].
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